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Abstract 
 
Array forms of MEMS resonator that uses a specific mid-frequency normal mode have been introduced for acquir-

ing a wider bandwidth of frequency response function (FRF). A conventional frequency response solver based on a 
modal approach faces computational difficulties in obtaining the FRF of these array forms because of the increase in 
the order of a linear dynamic model and the number of retained normal modes. The computational difficulties can be 
resolved by using a substructuring-based model order reduction and a frequency sweep algorithm, which requires a 
smaller number of retained modes of a reduced dynamic system than the conventional solver. In computing the FRF of 
a single resonator and its array forms, the presented method shows much better efficiency than the conventional solu-
tion by ANSYS as the number of resonators increases. In addition, the effects of multiple resonators in the array forms 
on filter performance are discussed compared with experimental data. 
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1. Introduction 

Filters are used as frequency selective components 
in modern wireless communication systems. A filter 
with a micro-scale mechanical resonator can be inte-
grated on chip; thus it is known to improve insertion 
loss and short battery life, which are disadvantages of 
an off-chip component. An important factor in de-
signing a filter is obtaining the desired frequency 
response functions within a specific range. In particu-
lar, a micromechanical filter is typically operated in a 
range of radio frequency signals and requires a high 
quality factor, so a lightly damped system operated in 
a high frequency range should be considered.  

Some wireless communication systems are re-

quired to operate at a higher frequency range than 
others. The higher frequency range can be simply 
acquired by reducing the geometric scale of a resona-
tor, but the reduction is limited because of manufac-
turing problems. Without changing the scale, a higher 
frequency range can be acquired by the use of a mid-
frequency normal mode whose eigenvalue is much 
larger than the smallest eigenvalue. Recently, some 
researchers have developed a ring resonator with this 
type of the mode, called the extensional wine glass 
mode [1]. They found that the mode is apparently 
indentified by comparison with the adjacent modes 
and the resonance peak is obtained in a higher fre-
quency range without reduction of the scale. More-
over, the ring resonator has been used in array form in 
order to acquire a frequency response function with a 
wider bandwidth, which results in a repeated geome-
try [2]. In this paper, an efficient numerical solution 
for obtaining the frequency response functions near 
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the extensional wine glass mode is presented for a 
large order numerical model due to the repeated ge-
ometry.  

A modal approach with finite element modeling 
has been a famous numerical method in frequency 
response analysis. The conventional modal approach 
should require all eigenmodes whose natural frequen-
cies are close to that of the extensional wine glass 
mode from the lowest one to achieve a desirable ac-
curacy. The higher frequency range acquired by the 
wine glass mode causes the number of the retained 
eigenmodes to increase. However, the large number 
of modes in the large order model causes a dramatic 
increase in computational cost. Therefore, an efficient 
method which can reduce the mode number and the 
model order should be employed to obtain a fre-
quency response function in a higher range. 

So far, a substructuring-based model order reduc-
tion has been developed to improve the efficiency in a 
linear dynamic analysis of large-scale systems. 
Automatic multilevel substructuring [3], substructur-
ing reduction for the iterated improved reduced sys-
tem [4], fast frequency response analysis [5, 6], and 
algebraic substructuring [7] are included in this cate-
gory. A variant of algebraic substructuring among 
them has recently been developed to solve only the 
modes of the interior eigenvalues [8], which contrib-
ute more to the frequency responses near a specific 
mode of a higher range than the extreme eigenvalues 
do. Other numerical techniques that consider low- and 
high-frequency mode truncations are also required 
when the interior modes are used. There have been 
two recently introduced methods to compensate for 
the low- and high-truncations; one is the frequency 
sweep algorithm, and the other is the mode accelera-
tion method [9]. The frequency sweep algorithm was 
initially introduced by Bennighof et al. [3], and its 
convergence was verified by Ko and Bai when it was 
applied to compensate for both the truncation errors 
[10]. A recent research shows that the frequency 
sweep algorithm has a better convergence rate and is 
also more robust than the mode acceleration method 
[11]. Thus, we choose frequency sweep algorithm 
here. 

In this paper, the finite element models of practical 
resonator arrays were used, and the characteristics of 
the computed frequency response functions of the 
resonator arrays were investigated. The frequency 
response functions of a single resonator were used as 
referenced results. The stiffness and mass matrices 

were constructed by the finite element models, and 
the damping matrix was approximated to be propor-
tional to the mass and stiffness matrices considering 
the high quality factor. A general purpose finite ele-
ment package ANSYS was adopted as a conventional 
method for comparison with the substructuring-based 
model order reduction. 
 

2. Frequency response analysis by algebraic 
substructuring  

The discretized model of a structure for a continu-
ous single-input and single-output second-order sys-
tem can be written as  

 
( ) ( ) ( ) ( ), ( ) ( )TMx t Dx t Kx t bu t y t l x t+ + = =&& &   (1) 

 
with the initial conditions x (0) = x0 and 0(0)x v=& . 
Here, t is the time variable, ( ) Nx t ∈ℜ  is a state vec-
tor, and N is the number of degrees of freedom (DOF). 
u (t) is the input excitation force, and y (t) is the out-
put measurement function. Nb∈ℜ and Nl∈ℜ are 
the input and output distribution vectors, respectively. 

, , N NM K D ×∈ℜ are the system mass, stiffness and 
damping matrices, respectively, where D is approxi-
mated by αM + βK.  

For frequency response analysis of [ωmin, ωmax] 
near a specific mid-frequency mode, the frequency 
response function of the dynamic system can be given 
as  
 

1
1 2( ) [ ]TH l K M bσω γ γ −= + ,  (2) 

 
where γ1 = γ1 (ω) = 1 + iωβ, γ2 = γ2 (ω,σ) = −ω2 + σ + 
iω (α + σβ), and Kσ = K – σM. The shift is given by σ 
= (ωmin

2 + ωmax
2)⁄2 for retaining a smaller number of 

the normal modes [8]. 
In algebraic substructuring (AS) among substruc-

turing-based model order reductions, first the trans-
formation matrix L is obtained from the shifted eigen-
system in the Craig-Bampton form [12], and next the 
S matrix, which is composed of m substructure modes, 
is obtained. The subspace spanned by the columns of 
the matrix Am=L-1S is called AS subspace [10]. Pro-
jecting the frequency response function H (ω) of (2) 
onto the AS subspace yields  
 

1 1
1 2( ) [ ] ( )T T

m m m m m m m mH l K M b l G bσω γ γ ω− −= + = ,  (3) 
 
where Gm is the dynamic matrix, Km

σ = Am
T KσAm, 
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Mm = Am
T MAm, lm = Am

T l, and bm = Am
T b. Note the 

difference in Eqs. (2) and (3) that the size of the sys-
tem matrices is reduced from N to m. The value of m 
is quite small as compared to N, and this becomes the 
primary reason for improving the computational effi-
ciency.  

In a large-scale system, m can be still too large to 
directly solve the frequency response functions at a 
large number of frequency sampling points. The 
computational efficiency can be further improved by 
employing the mode superposition of the retained 
normal modes (pn) and the frequency sweep algo-
rithm, which was first introduced by Bennighof [3], 
for the truncated modes (pt). The frequency response 
function of Eq. (3) is represented by the summation of 

( )nH ω  and ( )tH ω , which are computed by pn and 
pt , respectively: 
 

( ) ( ) ( )m n tH H Hω ω ω= +   (4) 
 

The mode superposition for the projected system 
on the AS subspace retains n interior eigenpairs of the 
eigensystem shifted and projected on the AS subspace 
and the corresponding eigenvectors Φn are used as the 
normal modes. From (3), mode superposition yields  
 

1
1 2( ) ( ) ( )T T T

n m n m n n n mH l p l I bσω ω γ γ −= = Φ Θ + Φ ,  (5) 
 
where ( n

σΘ ,Φn) are the eigenpairs of the eigensystem 
of (Km

σ, Mm). Note that the dynamic matrix in inverse 
form is reduced to the diagonal matrix of n order, 
which is very small as compared to m.  

( )nH ω  from the mode superposition generally 
contains errors due to the truncated modes in the low- 
and high-frequency ranges because the mid-frequency 
modes are retained. Therefore, the pt should consider 
both truncated modes, which presents a challenging 
problem to efficiently compensate for the error. This 
error can be compensated for by the following fre-
quency sweep iteration, in which the convergence has 
been mathematically verified [10].  
 

1 1 1 1

1

( ) ( ), ( )
1( ) ( ) ( ) ( )

T
t m t t

T
t m n n n m

H l p p

p K rσ σ

ω ω ω

ω ω
γ

− − − −⎡ ⎤
⎢ ⎥⎣ ⎦

=

= + −Φ Θ Φ

l l

l l
 (6) 

 
for ℓ = 1,2,…, with the initial guess pt

0 (ω), where rm
ℓ-

1 (ω) = bm −Gm (ω) (pn (ω) + pt
ℓ-1 (ω)). Note that Km

σ 
is a diagonal matrix and then Eq. (6) does not require 
an expensive computation per iteration rate. pt

0 (ωk) is 

determined by a linear extrapolation of the computed 
vector at a previous frequency if k>2; otherwise, pt

0 
(ω0) =0 and pt

0 (ω1)=pt
0 (ω0). A practical stopping 

criterion is set to test the relative residual error: 
( ) /m mr bω ε<  for a given tolerance ε . The itera-

tion scheme is known to have a very fast convergence 
rate; thus, the cost for the iterative procedure is ex-
pected to be minor until the criterion is satisfied. The 
iteration (6) guarantees its convergence by satisfying 
the condition that the contraction ratio ξ is smaller 
than one when the cutoff values for the eigenvalues of 
the normal modes are determined by 
 

min max max max/   and  /d dσ σλ ξ λ ξ= − = ,  (7) 
 
where d (ω,σ) = 2 1| / |γ γ−  and dmax = max{d (ωk,σ), 1 
≤ k ≤ nf}, in which nf is the number of sampling fre-
quencies. The number of the retained normal modes 
whose eigenvalues are within the cutoff values be-
comes much smaller compared to cases in which 
corresponding eigenvalues are retained from the 
smallest eigenvalue when the specific mid-frequency 
mode is employed. That causes another significant 
saving in the computational cost. Simply put, the 
presented method has advantages based on the small 
number of the retained modes in the reduced linear 
dynamic system.  
 

3. Numerical experiments 

The FE simulation of a micro-scale ring resonator 
is used for designing a high-frequency band-pass 
filter, e.g., channel-select filters for radio front-ends in 
wireless communications systems. The main goal of 
those filters is to acquire a desired frequency response 
function (FRF) in a specific range. The mechanical 
vibratory resonators have simple shapes such as canti-
lever beam, square, circle, ring and so on, and usually 
employ their smallest normal modes for operation; 
thus the computation of FRF around the normal 
modes with the simple shape is trivial in terms of 
modeling and computational cost. However, a re-
cently introduced ring resonator employs the so-
called extensional wineglass mode [1], whose natural 
frequency operates at a very high-frequency range 
compared as that of the first normal mode; thus, FRF 
at the much higher frequency range can be easily 
achieved without changing the geometry of a resona-
tor, in particular, the size, which is inversely propor-
tional to the acquired natural frequencies. Another 
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recent approach for acquiring the desired FRF is the 
use of an array form composed of single resonators, 
which can obtain a desired bandwidth for specific 
applications [2, 13]. The FRF of the resonator array 
depends on the number of assembled resonators, the 
shape of geometry to connect those resonators and so 
on; thus the design parameters increase and the ge-
ometries become more complex than those of the 
single resonator. Moreover, the numerical calculation 
of the FRF at the higher range has been a challenging 
problem. 

In this paper, by introducing recently developed 
methods [8, 10], we numerically demonstrated the 
FRF of some 2D resonator arrays [2], which were 
previously obtained through an experimental ap-
proach and investigated the performance of the nu-
merical solutions compared to conventional solutions. 
The FRF obtained by the array forms are compared 
with that of the single resonator in terms of filter per-
formance such as maximum peak, bandwidth, and 
ripple. Here we used the maximum peak instead of 
the insertion loss, which is a typical performance 
measure of a filter, because we employed the ampli-
tude ratio of mechanical vibration instead of the S21 
transmission in experimental data. 

 
3.1 Numerical methods 

The presented methods on the AS subspace are im-
plemented based on ASEIG [7]. The multilevel parti-
tion is automatically done by METIS [14]. The ei-
genpairs for the projected eigensystem on the AS 
subspace are computed by the shift-invert Lanczos 
method of ARPACK [15] with SuperLU [16]. Below 
are the methods for the next numerical experiments: 

AS+FS: Frequency response analysis using alge-
braic substructuring with a frequency sweep algo-
rithm. 

ANSYS-M [17]: Commercial package using mode 
superposition with normal modes from Block Lanc-
zos and residual flexibility modes, which is a com-
monly used method in many other commercial pack-
ages. The maximum cutoff value for the normal 
modes is determined by 2

max max(1.01 )λ ω= . min 0λ =  
is used because residual flexibility modes compensate 
for only the error of truncated high frequency modes 
[18]. 

ANSYS-D [17]: Commercial package using a di-
rect frequency response solver for comparison in 
terms of accuracy. 

All numerical experiments were conducted on a 
platform utilizing a 2.66 GHz Intel Xeon processor 
for AS+FS. This computer has 4 gigabytes (GB) of 
physical memory and the operating system is Red Hat 
Linux. The platform that has two 3.00 GHz Intel 
Xeon processors with 16 GB of physical memory, 
and Window XP operating system is used for 
ANSYS. Indirect comparisons were made because of 
the different platforms.  

 
3.2. Numerical results and discussion 

3.2.1 Single resonator 
The finite element model of a single resonator is 

constructed by brick elements with its order of 24,960 
as shown in Fig. 1(a), and it is partitioned by eight 
level bisections. The geometry and material proper-
ties are taken from the 634.6 MHz resonator of Ref. 
[1], and the ends of the four beams are set by the 
clamped boundary condition. From eigenvalue com-
putation, the extensional wine glass mode, whose 
natural frequency is 638.6 MHz, is shown in Fig. 1(b), 
and the corresponding eigenvalue of the mode is the 
281-th small eigenvalue. The natural frequency of the 
first normal mode is 3.9 MHz; thus, responses near 
much higher frequency, 638.6 MHz are easily ac-
quired by using the extensional wine glass mode. 

The frequency responses within 637.5~639.5 MHz, 
the range in which the resonance occurs, are com-
puted at 201 frequencies. The damping coefficients 
are assumed to be α=0 1/sec. and β=5.36×10−14 sec., 
by which the quality factor becomes about 4,650 at 
638.6 MHz. In an experimental approach [1], the 
driving force of the resonator is given at the periphery 
of quadrant 2, as shown in Fig. 1(a), by the elas-
tostatic compressive force and then quadrants 2 and 4 
are harmonically stretched and compressed under the 
harmonic forces as shown in Fig. 1(b). This harmonic 
behavior causes a change of current, which is experi-
mentally detected as output power [19]. In our nu-
merical simulation, a constant pressure representing 
the lateral dielectric driving of [2] is applied to the 
surface of quadrant 2, as shown in Fig. 1(a), and dis-
placements of three points located at the periphery of 
quadrant 4 are detected, referring to numerical simu-
lation for the 1D array [13]. As shown in Fig. 1(a), 
the total amplitude as output is obtained by summing 
the amplitudes of the positions T, M, and B as 
dT+dM+dB,

 
where dT, dM, and dB are their displace-

ment amplitudes in the radial direction. Here, the 
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displacements at only three points are used for easy 
detection, but a more sophisticated detection model 
will be required to obtain FRF close to experimental 
data. Other parameters for the frequency sweep algo-
rithm are set to 30.5  and  10ξ ε −= = . A reference 
response refH  in Fig. 2 stands for a static response 
under the same force without damping and inertia 
effect, and H/ refH  is then equal to ref/x x , which is 
known as the amplitude ratio. 

 

 
 

 
 
Fig. 1. (a) Finite element model of the single ring resonator 
and (b) its extensional wine glass mode. 

 

 
 
Fig. 2. Frequency response functions of the single resonator. 

According to Fig. 2, the frequency response func-
tions of AS+FS and ANSYS-M clearly agree with 
those of ANSYS-D. The frequency at the resonator 
peak is located near at 638.6 MHz due to the high 
quality factor. It is indicated in Table 1 that the time 
of FS iteration is negligible, and AS+FS uses 5 modes 
in 469 AS subspace instead of 287 modes in 24,960 
FE subspace. Approximately 16 times more time was 
required for ANSYS-M than for AS+FS because 
ANSYS-M employed an algorithm that used all low-
frequency modes. 

 
3.2.2 Resonator array 
Changing the geometric scale of a resonator pre-

sents the burden of fulfilling various demands of fre-
quency response functions. A recent approach for 
obtaining the FRF with a desired bandwidth is the 
construction of an array form from a single resonator 
[2, 13]. Here, the influence on the FRF and computa-
tional cost are investigated when 2-by-2 and 4-by-4 
arrays are used.  

A finite element model of a 2-by-2 array with solid 
elements is illustrated in Fig. 3(a), and its order is 
93,720, which is partitioned by 10 level bisections. 
The vertical beam becomes two times thicker and 
shorter compared to a single resonator, which is sug-
gested in previous research to obtain a better FRF for 
the filter design, and beam ends are clamped. 
Through eigenvalue computations, it was found that 
the 2-by-2 array has modes close to the extensional 
wine glass mode around 638 MHz, and the corre-
sponding eigenvalues are located in the vicinity of the 
1070-th small eigenvalue; thus, a larger number of 
normal modes is expected to be retained for FRF 
calculations than in the single resonator.  

Constant pressure is harmonically driven at quad-
rant 2 of (1, 1) and (2, 1) resonators, and all three 
points of (1, 2) and (2, 2) resonators are selected for 
displacement detection; thus, the amplitudes of 6 
points are summed into the total amplitude as output. 

 
Table 1. Performance comparison of the single resonator (m: 
dimension of the AS subspace, n: the number of retained 
normal modes). 
 

 AS+FS ANSYS-M 
m 469 - 
n 5 287 

FS time 0.19 sec. - 
Total time 10.34 sec. 162 sec. 
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Fig. 3. (a) Finite element model of the 2-by-2 resonator array 
and (b) a resonant mode close to the extensional wine glass 
mode. 

 

 
 
Fig. 4. Frequency response functions of the 2-by-2 resonator 
array. 
 
The frequency responses within 636.5~638.5 MHz, 
the range in which the resonance occurs, are com-
puted at 201 frequencies. Other parameters are the 
same as in the single resonator. 

Table 2. Performance comparison of the 2-by-2 resonator array. 
 

 AS+FS ANSYS-M 
m 1,780 - 
n 25 1,092 

FS time 1.30 sec. - 
Total time 52.76 sec. 2,302 sec. 

 
According to Fig. 4, the frequency response func-

tions of AS+FS and ANSYS-M are in good agree-
ment with those of ANSYS-D. Table 2 shows that the 
time of FS iteration is minor, and AS+FS uses 25 
modes in 1,780 AS subspace instead of 1,092 modes 
in 93,720 FE subspace. When the ring resonator is 
used in the array form, ANSYS-M requires more low 
frequency modes for a larger order model than for the 
single resonator, which results in much more effi-
ciency in the presented method, that is, 43.6 times 
more time is required for ANSYS-M than for AS+FS.  

A 4-by-4 resonator array is modeled, as shown in 
Fig. 5(a), and the order of its finite element model is 
371,280, which is partitioned by 11 level bisections. 
Through eigenvalue computations, the 4-by-4 array 
also has the mode close to the extensional wine glass 
mode around 638 MHz, and a greater number of ei-
genmodes is expected to be retained than in the 2x2 
array. 

Constant pressure is harmonically driven at quad-
rant 2 of (1, 1), (2, 1), (3, 1), and (4, 1) resonators, and 
all three points of (1, 4), (2, 4), (3, 4), and (4, 4) reso-
nators are used for displacement detection; thus, the 
amplitudes of 12 points are summed into the total 
amplitude as output. The frequency responses within 
636.5~638.5 MHz, the range in which the resonance 
occurs, are computed at 201 frequencies. Other pa-
rameters are the same as in the single resonator. 

According to Fig. 6, the frequency response func-
tions of AS+FS are in good agreement with those of 
ANSYS-D. ANSYS-M took 10 hours 38 minutes to 
compute normal modes, but failed to obtain the fre-
quency response functions due to the shortage of the 
computer resources. It is indicated in Table 3 that the 
time of FS iteration is short, and AS+FS uses 90 
modes in 7,101 AS subspace instead of 4,335 modes 
in 371,280 FE subspace. For this case, AS+FS spent 
less than a hundredth of the elapsed time of ANSYS-
M, and ANSYS-D took even less time, 8 hour 46 
minutes less than ANSYS-M due to the computation 
of over 4,335 eigenmodes. 

From the frequency response functions of Figs. 2, 4, 



2700  J. H. Ko et al. / Journal of Mechanical Science and Technology 23 (2009) 2694~2702 
 

 

  

 
 
Fig. 5. (a) Finite element model of the 4-by-4 resonator array 
and (b) a resonant mode close to the extensional wine glass 
mode. 

 

 
 
Fig. 6. Frequency response functions of the 4-by-4 resonator 
array. 

 
and 6, the filter performance data were obtained and 
then listed in Table 4; ripple is defined from maxi-
mum peak to minimum trough. The 3 dB bandwidth  

Table 3. Performance comparison of the 4-by-4 resonator 
array.  
 

 AS+FS ANSYS-M 
M 7,101 - 
N 90 4,335 

FS time 7.29 sec. - 
Total time 226.49 sec. > 10 hours 
 
Table 4. Summary of filter performance. 
 

 Single resonator 2-by-2 resonator 4-by-4 resonator

Max. Peak 70.7 dB 76 dB 82.75 dB 

Bandwidth 150 KHz 875 KHz 275 KHz 

Ripple - 10.25 dB 1.5 dB 

 
is used for the single resonator, and the bandwidth 
definition of the Chebyshev filter is used for the array 
forms because of the existence of the ripple. It should 
be noticed that the geometry of the resonator array is 
not exactly the same with that of experimental data 
[2] because exact information of their dimensions was 
not available; thus aspect comparisons with experi-
mental data will be discussed.  

According to Table 4, the maximum peak im-
proves as the number of resonators increases due to 
the increase in the number of detection nodes as the 
insertion loss improves due to increased transduction 
area in the case of experimental data. The bandwidth 
of 2-by-2 array becomes much wider as compared to 
the single resonator, but causes degradation in ripple, 
namely, larger ripple. Meanwhile, the ripple of the 4-
by-4 array improves from 10.25 dB to 1.5 dB over the 
2-by-2 array. The bandwidth of the 4-by-4 array be-
comes shorter than that of the 2-by-2 array, but longer 
than that of a single resonator. Therefore, the 4-by-4 
resonator improves bandwidth at the cost of little 
ripple, which is similar aspect to the experimental 
data. Additionally, there is a frequency shift of about 
1 MHz in the pass-band of the 4-by-4 resonator re-
lated to that of the single resonator, which is also a 
similar aspect in the experimental data.  

As aforementioned, there are many design parame-
ters of an array form to achieve a desired FRF; thus, 
optimization techniques can be used to obtain a better 
FRF in future work. In view of computational cost, a 
conventional method based on a modal approach 
faces difficulties in obtaining the frequency response 
function for the array forms with several single reso-
nators due to the dramatic increase in the number of 
the retained modes and model order, but the sug-
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gested method can obtain the FRF with much less 
cost since fewer retained modes are required for the 
reduced system.  
 

4. Conclusions 

The frequency response functions (FRF) of a ring 
resonator that uses a specific mid-frequency mode 
and its array forms were computed and investigated. 
First, frequency response analyses demonstrated that 
the resonators in an array form can obtain an FRF 
with a wider bandwidth at the cost of little ripple than 
is possible with the single resonators, as suggested in 
the previously reported experimental results. In ob-
taining the numerical solutions, the conventional ap-
proach with a large number of normal modes was 
considerably more expensive in terms of computa-
tional cost because many eigenvalues are smaller than 
those of the mid-frequency mode and a larger order 
model should be constructed as the number of resona-
tors increase in the array forms. However, in the pre-
sented method, the mode superposition method is 
enhanced by the so-called frequency sweep algorithm, 
which compensates for the errors in low- and high-
truncated modes; thus, a smaller number of the re-
tained normal modes are required. Moreover, the 
order of a linear dynamic model is reduced by pro-
jecting on the subspace by algebraic substructuring. 
Subsequently, the presented method requires a much 
lower cost for computing the frequency response 
functions due to both of the reductions in the number 
of the normal modes and the order of the model. 
Therefore, the substructuring-based model order re-
duction and the frequency sweep algorithm can be a 
competitive analysis tool for the optimal design of a 
feasible resonator array due to its higher efficiency. 
The FRFs of the resonator arrays have similar aspects 
of those of the experimental data, but more sophisti-
cated modeling in a detecting part is required in order 
to be closer to experimental data. Future work will 
focus an optimal design for a desired frequency re-
sponse function of ring resonators in a specific range 
by appropriate optimization techniques. 
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